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I.  Phys. A. Math. Gen. 28 (1995) 1139-1143. Printed in the UK 

Equiprobability of large-energy classical paths for 
one-dimensional motion in potential wells of infinite depth 

M Fusco Guard 
Dipartimento di Fisica Teanca and Istitub Nazionale di Fisica della Materia, Univenith di 
Salemo, 1-84081 Bamnissi (Salemo), Italy 

Received 9 May 1994 

Abstract. The semiclassical propagator in configuration space for a particle with one- 
dimensional motion in a potential well of infinite depth is investigated. It is shown thac if 
the motion’s period and its derivative are asymptotically decreasing functions of the energy, 
the large-energy classical paths give the same contribution (in modulus) to the propagator, and 
are therefore asymptotically equiprobable. This extends the results previously obtained for the 
quartic anharmonic oscillator. 

In a previous paper [l] the semiclassical propagator for the anharmonic quartic oscillator 
in configuration space was investigated by means of the Van Vleck formula, which gives 
it as a sum over all the denumerably infinite classical paths connecting two given points 
in the same time. It was found that the large-energy paths asymptotically give dhe same 
consibution, in modulus, to the semiclassical propagator, and therefore they tend to become 
equiprobable, while their energy increases. Moreover, the Van Vleck series diverges but in 
the general case it can be Cesaro resummed. 

The aim of this paper is to show that the main results in [l] can be extended to a 
much more general class ,of potentials: indeed, in the one-dimensional case, they hold for 
any infinitely deep potential well if the motion’s period and its derivative with respect to 
the energy are asymptotically monotonic decreasing functions of the energy when the latter 
goes to infinity. These conditions are satisfied, for instance, by any even-order polynomial 
potential well and, in order to clarify the hypothesis, this case will be examined in the 
following, the generalization being discussed at the appropriate places. 

In the multi-dimensional case, analogous conclusions hold if the system is separable 
in some coordinate system and if the resulting one-dimensional motions satisfy the above 
specified conditions. 

The results in [l] were obtained by means of direct analysis of the various quantities 
involved, while the present derivation is general. 

Let us recall that the semiclassical approximation KWKB for Feynman’s propagator [Z] 
in the configuration space is given [3,4], in the one-dimensional case, by 

Here the index a labels the classical paths, connecting the initial point XA to the final point 
X E  in the same time T = t~ - fA: in the following these will be denoted as ABT paths; S. 
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is the action for the orth path, x.(t), i.e. 

S, = s,'" L [ x d t ) , & ( ~ ) , t l d t  

L is the Lagrangian, and n, is the number of the focal points along the path, which are the 
points where the second derivative a2S,/axAaxB diverges. 

Let us consider a unit-mass particle with one-dimensional motion under the potential 

N 

V ( x )  = c a j x j  

j=O 
(3) 

with even N (> 4, in order to exclude the trivial case of the harmonic oscillator) and 
aN > 0. 

As in [l], let us recall that the ABT paths are specified by their energies and in the 
general case can be divided into four classes, according to the signs of the initial and final 
momenta, which are (+, +), (+, -), (-, +), (-, -), respectively. Each class has a shottest 
member, plus all the paths obtained by adding an integer number m of complete oscillations. 

The paths' energies E are the solutions of the equation 

dx 
= + l: J(2(E - V(X) ) )  

for given XA, X B ,  T. Let us define zK as 

(4) 

where tK = z K ( E )  is the time needed for the particle to go from the origin to the point 
X K  along the direct path of energy E. In order to clarify this let us suppose 0 < x A  < X B .  

Then equation (4) can be written 

T = uBjrB + u&zA + 26izzR + 2z3zL + (m + s , ~ ) P ( E )  (6) 

where P(E) denotes the period of the path with energy E ,  m is the number of complete 
oscillations, zR and tL denote the times needed for the particle to go from the origin to 
the right ( X R )  and to the left (XL) turning point, respectively; the index i = 1, . . . , 4  refers 
to the path's class, U B ~  = 1, -1.1, -1, U A ~  = -1, -1,1, 1, and Sjj denotes the Kronecker 
delta. Let us investigate equation (6) for large values of the energy. In this case, the turning 
points approach *b, where 

Here, as usual 151, the symbol - denotes an asymptotic representation, i.e. f ( x )  - a&), 
as x + 00, where a is a constant, is equivalent to f ( x )  = a&) + o(g(x))  as x + W. 

Moreover, when E >> 1, the period P ( E )  approaches 4rb and, from equation (4), it is 
asymptotically given by 

( E  + 00) (8) p ( ~ )  , E @ - N ) / W )  
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where c is a constant. 
Therefore, for given XA, XB, T ,  m and i ,  when the energy becomes large, the right-hand 

side of equation (6) is a monotonic decreasing function of E;  hence this equation admits a 
unique solution E , . i ( x ~ ,  XB, T )  for each integer m greater than a minimum value m ~ " ( i ) .  
This is also true for more general non-polynomial potentials if P ( E )  has an asymptotic 
monotonic decreasing dependence on E .  In conclusion, for each class there is a countable 
family of ABT paths. Moreover, from the equations (6) and (8) it follows that 

The amplitude A,,; of the path's contribution to the semiclassical propagator is given 
by 

where the action S,,; is 

XB 

S,,i =LA pdx - E,,iT = W,,i - Em,iT (11) 

and W,,i, the Hamiltonian's characteristic function, can be written as 

W,.i = u ~ j W B + ~ ~ j w A + 2 S j ~ w R + 2 S i 3 w L + ( m + G i 4 ) J ( E ) .  (12) 

In the last equation w K  is defined as 

xx 
wK = J(Z(E - V ( x ) ) )  dx 

where the integral is done along the direct path from the origin to the point X K ,  and J ( E )  
is the action variable 

xu 
J ( E ) = 2 /  pdx. 

XL 

The term m J ( E )  in the right-hand side of equation (12) gives the contribution to W from 
m complete oscillations. 

From equations (11) and (12).it follows that 

but the sum in parentheses on the right-hand side is identically zero, due to equation (6), 
since aJIaE = ~ P ( E ) ,  and awUKIaE = zK. Therefore 
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From equation (13) it follows that 

Moreover, from equation (6), 

a t a  

In order to investigate the behaviour of aE/axB for large energy, we need the asymptotic 
representation of aP/a E; now, it is well known that it is not always possible to differentiate 
an asymptotic representation such as equation (S), and for a generic potential one has to 
assume the independent existence of an asymptotic expansion for aP/aE or equivalent 
conditions [ 6 ] ;  however, it is easy to see that these conditions are fulfilled for polynomial 
potentials as given in equation (3) so that, from equation (S), 

_ N  '('- N)~(Z-3N)/(2h) 
aE 2N 

From equations (5) and (19) it follows that for large E, the leading term in the denominator 
in equation (18) is m(aP/aE) with asymptotic behaviour 

Putting together equations (16)-(18) and (20) it follows that, for large values of the energy, 

This equation shows that the asymptotic amplitude of the ABT paths' contributions to the 
semiclassical propagator does not depend on the path's energy: the ABT paths are therefore 
asymptotically equiprobable, and the results found in [l] for the N = 4 case, by directly 
computing the various quantities, are extended in this way to this more general case. The 
asymptotic equiprobability of the classical paths therefore appears to be a general property 
of one-dimensional motion in an infinitely deep potential well, under the above specified 
conditions. The physical interpretation of this result is the following: the amplitude of a 
classical path's contribution to the semiclassical propagator is a measure of the number of 
neighbouring constructively interfering paths, and this number, which is a priori different 
for the various paths, becomes asymptotically the same, while the path's energy increases. 

This result also implies that the series (1) for the semiclassical propagator does not 
converge, but it can, in general, be resumed due to phase cancellation, as shown in the 
case of a quartic oscillator in [I]. 

These conclusions hold as long as X B  is not conjugate to X A  with respect to a path 
x i @ ) .  In the latter case, the corresponding amplitude will diverge, as shown in [l], and that 
path's contribution will dominate the entire Van Vleck's series. This path will therefore be 
favoured with respect to the others. The discussion of this point is similar to the one given 
in-[l], and will therefore be omitted here. 
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